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A coupled Boussinesq-boundary integral method is developed to simulate nonlinear water 
wave interaction with structures consisting of multiple layers with different physical and 
hydraulic characteristics. The flow field in the water region is modeled with a modified 
set of Boussinesq-type equations, with additional terms to account for the flow of water 
into/out of the porous region. The equations of motion for the porous regions include an 
empirical Forchheimer-type term for laminar and turbulent frictional losses, and an 
inertial term for acceleration effects. A boundary integral formulation based on Green’s 
third identity is used to close the problem for the porous region. The coupled equations 
for the evolution of the free surface and boundary values of the tangential velocities are 
integrated in time using an iterative Crank-Nicolson scheme. At each time step, the 
Boussinesq problem is solved for the water region to determine the pressure at porous 
interface. The boundary integral problem for the porous region is then solved to 
determine the normal velocities along porous interface. The model is used to investigate 
wave interaction with a vertical surface-piercing porous structure and wave transmission 
over submerged breakwaters. Comparisons between the numerical model predictions and 
laboratory data show generally good agreement for both the wave field inside the 
structure and the reflection/transmission coefficients. 

1. INTRODUCTION 
Porous structures such as rubblemound breakwaters typically consist of 

multiple dissipative layers with different physical and hydraulic characteristics. 
A better understanding of the dissipation, reflection and transmission 
characteristics of porous structures is required to accurately predict wave 
conditions in navigation channels and harbors, sediment dynamics behind 
submerged breakwaters, and erosion and sedimentation processes near coastal 
inlets.  

Early theoretical studies of wave-porous bed interaction were concerned 
with the attenuation of surface waves propagating over permeable horizontal 
seabeds (e.g. Putnam, 1949; Reid and Kajiura, 1957). Linear wave theory was 
used to describe the overlying wave field while Darcy’s law was used to 
describe the flow inside the porous layer. Darcy’s law is valid for flows with 
low Reynolds number. As the flow velocity or particle size increases, Darcy’s 
linear relationship between the discharge velocity and pressure gradient breaks 
down and the quadratic drag law proposed by Forchheimer (1901) becomes 
more applicable. Sollitt and Cross (1972) presented a modified set of equations 
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for fluid motion within a porous medium that included both a Forchheimer-type 
drag term and inertial effects. An eigenfunction expansion method was used to 
solve the linearized form of the equations for waves normally incident on 
vertical surface-piercing porous structures.  

In many applications, it is important to investigate wave propagation over 
non-horizontal seabeds or wave interaction with non-rectangular breakwaters. 
The porous medium could also consist of multiple layers with different 
porosities and dissipative properties. Several investigators (e.g. Sulisz 1985; 
Mallayachari and Sundar 1994) have used linear boundary integral methods to 
simulate wave interaction with multi-layer porous structures.  Linear models, 
however, cannot accurately describe the nonlinear wave steepening and 
breaking processes that occur on the slopes of submerged and surface-piercing 
trapezoidal structures. These complicated processes can be better addressed by 
numerically solving either the full Navier-Stokes equations (e.g. Liu et al. 1999) 
or asymptotic theories for weakly nonlinear/weakly dispersive waves.   

Flaten and Rygg (1991) developed an asymptotic Boussinesq-type theory 
for shallow water wave propagation over a permeable bed. Darcy’s law was 
used to model the flow inside the porous layer. Cruz et al. (1997) developed a 
two-layer weakly nonlinear Boussinesq model that included both fluid 
acceleration effects and quadratic drag losses inside the porous layer. The 
dispersive and damping properties of the equations were also improved by 
introducing additional dispersive terms to the momentum equations using the 
approach of Madsen and Sorensen (1992). Hsiao et al. (2002) extended the two-
layer approach to large amplitude waves by using a fully nonlinear set of 
Boussinesq equations for the water region. While the two-layer Boussinesq 
approach is suitable for modeling wave propagation over permeable seabeds, it 
is not ideal for studying wave interaction with multi-layer porous structures of 
arbitrary cross-section. The equations assume that the thicknesses of the porous 
layers are much smaller than the incident wavelength and the interfacial/seabed 
slopes are mildly varying. For structures that are a fraction of a wavelength, the 
spatial discretization schemes used for the open water region are also too coarse 
to resolve details of the flow field inside the porous structure.   

In this paper, a numerical model is presented for simulating nonlinear wave 
interaction with multi-layer porous structures of arbitrary shape. The coupled 
model consists of a set of fully nonlinear Boussinesq equations for the water 
region and boundary integral equations for each of the porous layers. This 
approach does not make any assumption as to the profile of the flow field inside 
the porous medium. The numerical model is initially calibrated with data from 
laboratory experiments on wave interaction with a vertical porous breakwater 
(Requejo et al. 2002). The numerical model is then used to investigate wave 
transmission over submerged breakwaters and compared with the laboratory 
data of Seabrook and Hall (1998). 
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2. THEORETICAL BACKGROUND  

Governing Equations for Water Region 
Consider the interaction of weakly dispersive surface waves with a multi-

layered surface-piercing breakwater as shown in Figure 1. A fully nonlinear set 
of Boussinesq equations is used to describe the fluid motion in the water region. 
The evolution of the free surface η(x,t) is governed by the depth-integrated mass 
conservation equation: 

(1) )( p
nt q=⋅∇+ Qη

where ( )yx ∂∂∂∂=∇ /,/ , η(x,t) is the water surface elevation, represents the 
normal flow through the water-porous layer interface and Q(x,t)

)( p
nq

 is the volume 
flux density given by: 

dz
h
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u(w) is the horizontal fluid velocity in the water region and h(x) is the water 
depth.  
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Figure 1. Definition Sketch. 

The momentum equation is derived by evaluating the Euler equations at the free 
surface to obtain: 

( ) 0)()()()()( =∇+∇⋅+∇+∇+ wwwww
t wwgw ηηηηηη

ηη uuu(w)
t

(3) 

where w(w) is the vertical velocity. The system of equations (1) to (3) requires 
knowledge of the vertical profile of the flow field in order to evaluate the 
horizontal and vertical velocities at the free surface and the volume flux density. 
For shallow water waves, the vertical profile of the flow field is obtained by 
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expanding the velocity potential, Φ, as a Taylor series about an arbitrary 
elevation, zα, in the water column (Nwogu 1993): 
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where . The vertical velocity at the bottom of the water region 
depends on the inflow/outflow from the porous region and is obtained by 
enforcing the continuity of normal velocity at the water-porous layer interface: 
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By substituting Eq. (5) into Eq. (4) and differentiating, we obtain the vertical 
distributions of the horizontal and vertical velocities as: 
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where the velocity variable uα = u(x,zα,t) is the horizontal velocity at z = zα. The 
volume flux density required to evaluate the mass conservation equation is 
obtained by substituting Eq. (6) into Eq. (2) and integrating to yield: 
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The momentum equation can be written in terms of the velocity variable uα by 
substituting the expressions for u(w) and w(w)  (Eqs. 6 and 7) into Eq. 3 to obtain:  
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where ν and fw are the eddy viscosity and bottom friction coefficient respectively 
intended to account for wave energy dissipation due to wave breaking and 
bottom friction. The wave breaking model is based on the eddy viscosity model 
of Nwogu (1996). 

Equations (1), (8) and (9) represent a modified set of fully nonlinear 
Boussinesq equations for the water region. Compared to the fully nonlinear 
equations of Nwogu (1996), Eqs. (1) and (9) contain additional terms involving 

to account for flow into and out of the porous structure. The normal flow 
through the water-porous layer interface will be determined by solving a 
boundary value problem for the porous region. 

)( p
nq

Governing Equations for Porous Region 
The asymptotic Taylor series expansion used to describe the flow field in 

the water region could also be applied to shallow porous layers (e.g. Hsiao et 
al., 2002). However, this approach is cumbersome to apply to structures that 
consist of multiple porous layers of arbitrary cross-sections. Since the flow 
inside the porous layer satisfies the Laplace equation, Green’s third identity may 
be applied over any closed boundary S to relate the values of the potential inside 
the bounded region with the boundary values of the velocity potential Φ(p)(ξ) 
and its normal derivative ∂Φ(p) (ξ)/∂n. For field points x that lie along the 
boundary, the velocity potential is given by: 
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where G = -ln |x-ξ| is the Greens function and ξ represents the source point on 
the boundary S over which the integration is performed. The integral equation is 
evaluated numerically by dividing the porous layer boundaries into a finite 
number of segments with the values of Φ(p) and ∂Φ(p)/∂n assumed to be constant 
over each segment and defined at the  midpoints of the segments. The integral 
equation for each porous region can thus be rewritten as a matrix equation in 
terms of discrete values of Φ(p) and ∂Φ(p)/∂n: 
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where N is the number of segments on the boundary and the matrix coefficients 
Aij, BBij correspond to the integral of the Green’s function or its normal derivative 
over the individual segments. When i ≠ j, the integrals are approximated by 
assuming the Green’s function (or normal derivative) to be constant over each 
segment and evaluated at the midpoint of the segment. When i = j, the integrals 
become singular and are evaluated analytically.  

Each porous layer may have up to four different types of boundary 
conditions corresponding to: 1) matching boundary with water region, 2) free 
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surface, 3) matching boundary with another porous layer, and 4) impermeable 
boundary.  

Along matching boundaries with the water region, we enforce the 
continuity of pressure and normal velocities. The solution of the problem for the 
water region provides pressure boundary conditions for the porous layer while 
the solution for the porous layer provides normal velocity boundary conditions 
for the water region. Following Sollitt and Cross (1972), we assume that the 
flow in the porous region is governed by a Forchheimer-type resistance term 
plus an inertial term to account for fluid acceleration around solid particles. The 
continuity of pressure boundary condition is obtained by evaluating the 
modified Euler equations for the porous region along the interface z = zi. This 
can be expressed in terms of the tangential velocity along the interface 

)()( pp
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where cm is an inertial coefficient, which can be written in terms of the added 
mass coefficient, ca, using cm = 1 + (1-λ) ca, λ is the effective porosity of the 
medium,  are the discharge velocities on the porous layer side of the 
interface, and f
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p
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l and ft are empirical laminar and turbulent friction factors. The 
friction factors can be related to the permeability of the medium (Sollitt and 
Cross, 1972) or the characteristic stone size, d, and porosity by (e.g. Van Gent 
1995): 
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a0, and b0 are empirical constants, and KC = πH/(λd) is the Keulegan-Carpenter 
number with H the characteristic wave height. The empirical coefficients 
depend on the particle shape, surface roughness and Reynolds number of the 
flow. 

The pressure boundary condition (Eq. 12) is also applied along phreatic 
surface boundaries in the porous region with zi  = η and pi  = 0. The location of 
the phreatic surface is obtained by solving the kinematic free surface boundary 
condition: 

ηη
λ
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The normal velocities ∂Φ(p)/∂n are obtained as part of the solution of the 
boundary integral equation.  
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Along matching boundaries between porous layers, we enforce the 
continuity of Φ(p) and ∂Φ(p)/∂n while the zero normal flow boundary condition 
(∂Φ(p)/∂n = 0) is enforced along impermeable boundaries. 

Numerical Solution 
The governing mass and momentum equations for the evolution of the 

free/phreatic surfaces and velocity variables are integrated in time using a 
modified Crank-Nicolson scheme. At each time step, we initially solve the 
Boussinesq problem for water region to determine the pressure forcing along all 
porous interfacial boundaries. The porous-region momentum equation is then 
integrated to determine the velocity potential along the interface while the 
kinematic boundary condition is integrated to update the location of the phreatic 
surface. The boundary integral problem for the porous region is then solved to 
determine normal velocities along the interfacial boundaries. Finally, the 
Boussinesq problem is re-solved with updated values of the normal velocity 
along porous interface. This procedure is repeated at each time step until 
convergence.    

3. NUMERICAL RESULTS  

Wave Interaction with a Vertical Surface-Piercing Breakwater 
The performance of the numerical model was initially evaluated with data 

from the laboratory experiments of Requejo et al. (2002), who investigated the 
interaction of periodic waves with a crib-style rectangular breakwater. The 
experiments were conducted in a 12-m long and 0.56-m wide wave flume using 
two structure widths (B = 0.56m, 1.12m), two characteristic stone sizes (d = 
0.0105m, 0.0378m), three wave periods (T = 1.2s, 1.7s, 2.7s), and five wave 
heights (H = 0.02m to 0.09m). Five wave probes were used to measure the wave 
field in front of the structure and two or three wave probes were used to 
measure inside the structure.  The experimental layout is shown in Fig. 2. 

 

0.28m

0.4m 0.33m0.33m

h=0.41m

#1 #2 #3 #4

0.56m 0.28m

#5 #6 #7 #8

12m
0.56m

 
 

Figure 2. Layout of laboratory experiments of Requejo et al. (2002). 
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Table 1. Summary of Best-Fit Empirical Constants for H=0.034m, T=1.7s. 
 

Structure 
B(m) 

d(m) ao bo

#1 1.12 0.0105 100 1.5 
#2 0.56 0.0105 100 1.5 
#3 1.12 0.0378 100 0.6 
#4 0.56 0.0378 100 0.6 
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Figure 3. Comparison of measured and predicted wave heights for 
H=0.034m, T=1.7s. 

 
We investigated the sensitivity of the numerical model predictions of the wave 
heights inside the porous structure to the values of the empirical constants ao, bo. 
Numerical simulations were carried out for one of the test conditions (H = 
0.034m, T = 1.7s) for different combinations of ao and bo, with ao varying from 
0 to 300, and bo from 0 to 3. These range of values were selected to cover the 
optimal values ao = 100 and bo  = 1.1 recommended by Requejo et al. (2002). 
The value ca = 0.4 was used for added mass coefficient as suggested by Van 
Gent (1995). The values of ao and bo that yielded the least square error between 
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the measured and predicted wave heights inside the structure are summarized in 
Table 1. The empirical constant bo associated with turbulent losses was smaller 
for Structures #3 and #4 that have the larger stone size. 

The numerically simulated wave height distributions with the best-fit 
coefficients are compared to the measured wave heights in Figure 3. Although 
the reflection coefficients were similar for some of the test conditions, the 
different structures have fairly different wave height variations inside the 
structure. Excellent agreement is observed between the measured and predicted 
wave heights inside the structure for Structures #1, #2, and #3.  
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Figure 4. Measured and predicted reflection coefficients (T = 1.7s). 

 
The best-fit empirical constants for Structures #3 and #4 (ao = 100, bo = 0.6) 
were used in numerical simulations for other wave conditions and structure 
configurations to investigate the potential relative error in using a universal set 
of constants to estimate the reflection properties of porous structures. The 
measured and computed reflection coefficients are shown in Figure 4 for T 
=1.7s, and Figure 5 for T = 1.2s. Excellent agreement is observed between the 
predicted and measured reflection coefficients for Structures #1, #2 and #3 for T 
= 1.7s. The numerical model also reproduces the observed trends in the 
variation of reflection coefficient with wave steepness. For the T = 1.2s test 
conditions, the numerical model predicts larger values of the reflection 
coefficient (5-25%) but generally reproduces the correct trends in the variation 
of reflection coefficient with wave steepness. 
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Figure 5. Measured and predicted reflection coefficients (T = 1.2s). 

Wave Propagation over a Submerged Breakwater 
Seabrook and Hall (1998) carried out an extensive series of tests to 

investigate wave transmission over submerged rubblemound breakwaters. The 
tests were conducted in a 47-m long and 1-m wide wave flume at Queens 
University, Canada. The layout for the experiments is shown in Figure 6. The 
breakwater cross-section had a crest height of hs = 0.25m and 1V:3H side 
slopes. The breakwater consisted of a relatively coarse inner core layer with d50 
= 0.017m and two layers of primary armor with d = 0.059m. Over 800 irregular 
wave tests were performed with 13 breakwater geometries, 5 water levels, 3 
spectral peak periods, and 4 significant wave heights.  

Since the transmission coefficient for submerged breakwaters depends on 
parameters such as the relative submergence depth and relative crest width, we 
carried out two sets of numerical simulations. The first set of simulations were 
conducted for a constant crest width B = 0.6 m and varying submergence depths 
ds = 0.05, 0.1, 0.15 and 0.2m. For the second set of simulations, we varied the 
crest width B = 0.6, 1.5, 2.5 and 3.5m and used a submergence depth of 0.05m. 
The numerical simulations were performed for an incident sea state 
characterized by a JONSWAP spectrum with Hmo = 0.1 m, Tp = 1.5 s and γ = 
3.3. A porosity of 0.5 and empirical constants ao = 100, bo = 0.6, and ca = 0.4 
were used for the model simulations. 
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Figure 6. Layout for the Seabrook and Hall (1998) experiments. 

 
Figure 7 shows a comparison of the variation of the measured and predicted 
transmission coefficients with relative submergence depth, ds. For non-breaking 
waves with ds/Hmo = 2, the transmitted wave height is about 80% of the incident 
wave height. As ds decreases, the transmitted height decreases to about 40% of 
the incident wave height. Wave breaking over the breakwater also plays an 
important role in the wave energy dissipation process. Figure 9 shows a 
comparison of the wave transmission coefficient as a function of the breakwater 
crest width for a submergence depth of 0.05m. The results show a decrease in 
transmission coefficient with increasing crest width due to both wave breaking 
and energy dissipation inside the porous structure. 
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Figure 7. Variation of transmission coefficient with relative submergence 

depth. 
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Figure 8. Variation of transmission coefficient with structure crest width. 

CONCLUDING REMARKS 
A coupled Boussinesq-boundary integral model has been developed to 

simulate nonlinear wave interaction with surface-piercing and submerged 
porous structures. The model solves vertically integrated Boussinesq-type 
equations for the water region and evolution equations for the phreatic surface 
and boundary values of the tangential velocities in the porous region. A 
boundary integral method is used to close the problem for porous region and 
determine the relationship between the normal and tangential velocities along 
the boundaries. Since the energy dissipation within porous structures is 
governed by empirical laminar and turbulent frictional factors, the applicability 
of the model formulation and determination of the friction factors have been 
investigated by comparing numerical model predictions of wave reflection and 
transmission coefficients through porous breakwaters with data from two 
laboratory experiments. Overall, the model performed reasonably well and was 
able to reproduce the observed variation of reflection coefficient with wave 
steepness with one set of empirical constants. Good agreement was also 
observed for the wave field inside the structure, provided the empirical 
coefficients are suitably chosen. 
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